

PCM Sound Generator IC

RF5C68A

GENERAL DESCRIPTION

RF5C68A is a sound generator IC that uses pulse code modulation (PCM). It has a digital control oscillator (DCO) and digital control amplifier (DCA) built in. You can structure a PCM sound generator system by connecting external waveform data memories (pseudo SRAM, SRAM, or mask ROM) and D/A converters, controlling them with a microcomputer.

FEATURES

	•	PCM	sound	generation	method
--	---	-----	-------	------------	--------

- Envelope data width 8 bits
- Left(L) and Right(R) stereo output at arbitrary orientation level
- Pitch fine adjustment
- Interface with 8-bit CPUs
- Interface with waveform memories

Can be directly coupled with two 256K (32K \times 8) pseudo SRAMs.

Can be directly coupled with two 256K (32K × 8) mask ROMs.

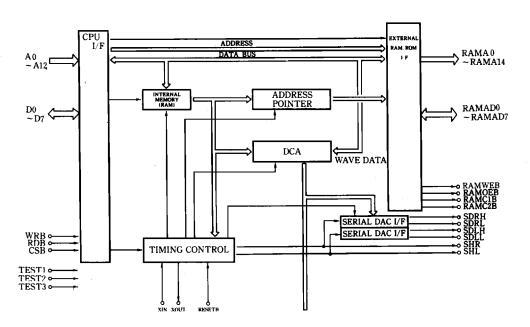
Can be directly coupled with two 256K (32K × 8) SRAMs.

• Interface with D/A converters

Can be directly coupled with 10-bit serial D/A converters.

Can be directly coupled with 8-bit parallel D/A converters.

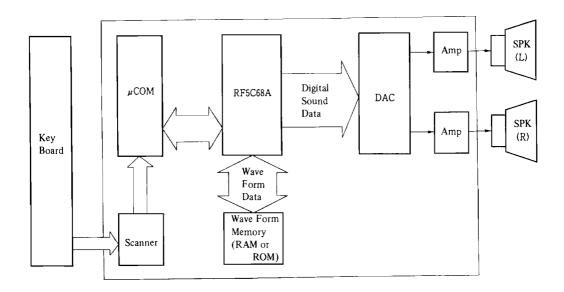
- Silicon gate CMOS process
- 5V single power supply


APPLICATIONS

Sound generator for personal computers, electronic instruments, TV games, and toys.

■ PIN CONFIGURATION (Top View)

BLOCK DIAGRAM



PIN DESCRIPTION

PIN NAME	FUNCTION	1/0	DESCRIPTION
A0 ~ A12	Address input	I	Address signals input from a microcomputer .
D0 ~ D17	Data input output	1/0	Data bus signals between RF5C68A and a microcomputer
CSB	Chip select input	1	Chip select signals input from a microcomputer
RDB	Read enable input	1	Read signals input from a microcomputer
WRB	Write enable input	1	Write signals input from a microcomputer
RAMADO ~ RAMAD7	RAM address input output	1/0	When pseudo SRAMs are connected, these are multiplex signals of lower addresses/data between RF5C68A and SRAMs. When MROMs are connected, these are data input signals from MROMs. When SRAMs are connected, these are data bus signals between RF5C68A and SRAMs.
RAMA8 ~ RAMA14	RAM address output	o	Higher address signals of SRAM and MROM
RAMA0 ~ RAMA7	RAM address output	0	Lower address signals of SRAM and MROM
RAMC2B	Memory select output	0	SRAM and MROM select signals of higher 32 K-bytes
RAMC1B	Memory select output	0	SRAM and MROM select signals of lower 32 K-bytes
RAMWEB	RAM write enable output	0	Write signals of pseudo SRAM and SRAM
RAMOEB	Memory output enable output	0	Read signals of pseudo SRAM, SRAM, and MROM
SDLH	Higher "L" data output	0	Higher "L" data signals output to serial DACs
SDLL	Lower "L" data output	0	Lower "L" data signals output to serial DACs
SDRH	Higher "R" data output	0	Higher "R" data signals output to serial DACs
SDRL	Lower "R" data output	0	Lower "R" data signals output to serial DACs
DAC0 ~ DAC7	Multiplex signal output	0	"R" data/"L" data multiplex signals output to parallel DACs $$
SHL	"L" data sample/hold signals output	0	"L" data sample/hold signals of DAC0 to DAC7
SHR	"R" data sample/hold signals output	0	"R" data sample/hold signals of DAC0 to DAC7
RESETB	Reset signals input	ı	Reset signals
XIN	Crystal signals input	1	External terminal of crystal oscillator
XOUT	Crystal signals output	0	Clock can be directly input to XIN.
TEST 1 TEST 2 TEST 3	Test input pin	ŀ	These are test inputs usually set to logic "L". When MROM or SRAM is used for memory, TEST2 is set to logic "H".
vcc	Power supply	_	Power supply terminal
GND	Ground	_	Grounding terminal

■ APPLICATION EXAMPLE

■ ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Condition	Limit	Unit
Vcc	Supply voltage	GND = 0V	-0.3 ~ 7	V
VTE	Input and Output Voltage	GND = 0V	$-0.3 \sim \text{Vcc} + 0.3$	V
Pd	Maximum Power consumption		200	mW
Topr	Opr Operating Ambient Temperature		0~70	°c
Tstq	Storage Temperature		−40 ~ 125	°C

■ RECOMMENDED OPERATING CONDITIONS

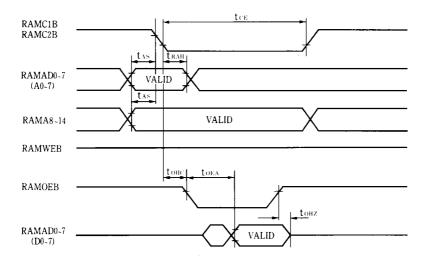
		Sı	lue	Unit	
Symbol	Parameter	Min	Тур.	Max.	Omi
Vcc	Supply Voltage	4.5		5.5	V
VIH	Input High Voltage	2.2		Vcc + 0.3	٧
VIL	Input Low Voltage	-0.3		0.8	V
Та	Ambient Temperature	0		70	°C

■ DC CHARACTERISTICS

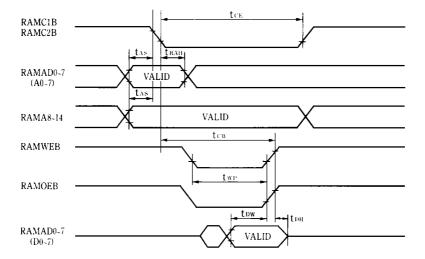
 $(Ta = 0 \sim 70^{\circ}C, Vcc = 5V \pm 10\%)$

6	D	T Candinian	Sp			
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
VIH1	Input High Voltage (TTL Compatible)		2.0		Vcc + 0.3	٧
VIL1	Input Low Voltage (TTL Compatible)		-0.3		0.8	٧
V _{IH2}	Input High Voltage (XIN pin)		3.5		Vcc + 0.3	٧
VIL2	Input Low Voltage (XIN pin)		-0.3		1.5	٧
lu	Input Leakage Current	Ov \le V in \le Vcc	-10		10	μΑ
Vон	Output High Voltage	Iон = -4.0 mA	2.4			٧
Vol	Output Low Voltage	IOL = 4.0 mA			0.4	٧
loz	Output Leakage Current for OFF State	Ov ≦ Vo∪t ≦ Vcc	-10		10	μΑ
Icco	Standby Supply Current	VIN = OV, Vcc			300	μΑ
lcc1	Operating Supply Current	forr = 10 MHz			30	mA

AC CHARACTERISTICS

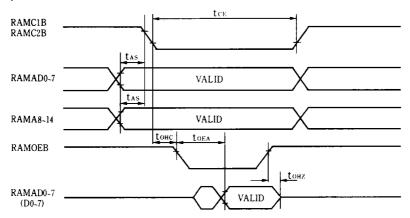

 $(Ta = 0 \sim 70^{\circ}C, Vcc = 5V \pm 10\%)$

Symbol	Parameter	T (0 10)	Sp	Ī		
	Parameter	Test Condition	Min.	Тур.	Max.	Unit
fopr	Input Clock Frequency				10	MHz
TCE	RAMCE 1, 2 Pulse Width		200			ns
Tas	Address to RAMCE 1, 2		0			ns
Тван	RAMCE 1, 2 to Row Address		30			ns
Тонс	RAMCE 1, 2 to RAMOEB		0			ns
TOEA	RAMOEB to Read Data Valid				50	ns
Тонг	RAMOEB to Read Data Float		20			ns
Tcw	RAMCE 1, 2 to RAMWEB High		200			ns
Twp	RAMWEB Pulse Width		35			ns
Tow	Write-Data Valid to RAMWEB High		30			ns
Трн	Write-Data Hold after RAMWEB High		0			ns
TRDA	Read-Data Valid to RDB High				100	ns
TROH	Read-Data Hold after RDB High		10			ns
Twan	Write-Data Valid to WRB High		30	·		ns
Twen	Write-Data Hold after WRD High	-	30			ns

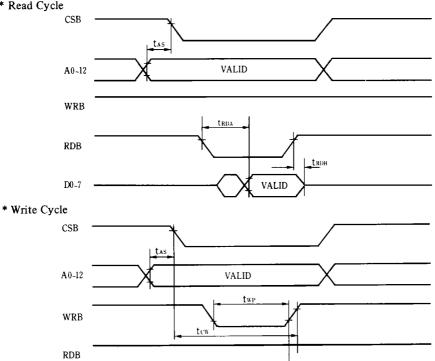

■ TIMING CHART

1. Psendo SRAM Interface

* Read Cycle


* Write Cycle

2. Mask ROM Interface


* Read Cycle

3. CPU Interface

D0-7

twrn

twra VALID

FUNCTIONS

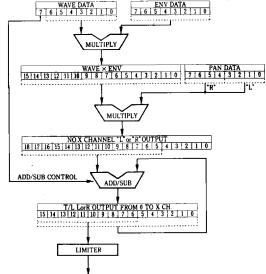
1. PCM Sound Generation

Waveform data (WAVE DATA) is specified by the internal address pointer of RF5C68A, and is read from external waveform memories. RF5C68A multiplies it with envelope data (ENV DATA) or stereo pan pot data (PAN DATA) that are stored in the internal memory (RAM). The operation above is performed for each of the eight channels. RF5C68A outputs the total of the results as single-sample PCM sound data (digital data).

RF5C68A performs the operation even to the channel that is not sounding. Therefore, one sampling requires a fixed time (one cycle of source clock × 384).

However, the operation result of the channel that is not sounding does not affect the output PCM sound data.

The digital control amplifier (DCA) block, which executes the above processing, is described below.

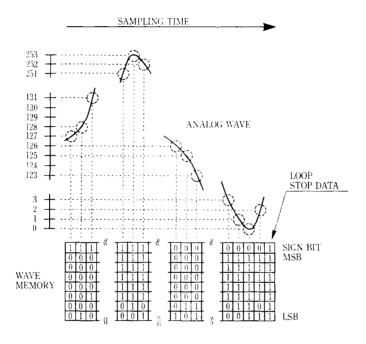

[DCA block]

The digital control amplifier block generates musical tones using the data read from internal and external memories.

The figure below shows how each type of data is processed.

The above processing is performed sequentially for each of the channels 1 to 8. Every time the R and L outputs of the eight channels are totaled, sample/hold signals for R and L are generated.

If there is a plus side overflow while totaling the values of the eight channels, the limiter circuit sets FFFFH as the result. If there is a minus side overflow, the limiter sets 0000H as the result.


TO SERIAL DAC I/F & OUTPUT PIN(DAC7~9)

[Example of waveform data format]

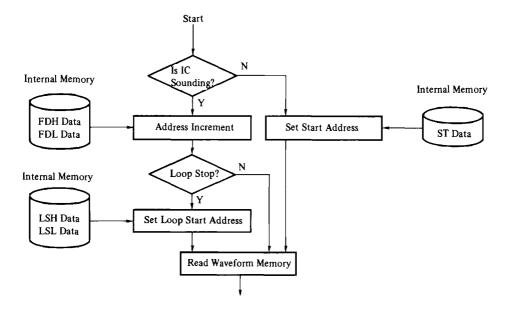
The figure below shows an example format of waveform data to be stored in an external waveform memory. In this example, digital sampling is performed assuming that the values of the analog waveform are 127 at the center, 253 at maximum, and 0 at minimum.

The 'FFH' waveform data is handled as loop stop data (therefore, 'FFH' cannot be used as waveform data). If 'FFH' data is read from the waveform memory, the waveform memory read address is reset to the LSH and LSL data (see 2. Wave Form Memory Read), and waveform data is read again.

2. Wave Form Memory Read

RF5C68A has an address pointer that specifies addresses of a 64K-byte waveform memory independently for eight channels, according to start address data (ST data), loop start address data (LSH data, LSL data), and address count data (FDH data, FDL data) that are stored in the internal memory, and loop stop data that is stored in the waveform memory.

The address pointer fixes the waveform memory read address of a channel that is not sounding to the ST data of that channel. Therefore, in the first sampling cycle after the channel has started sounding, music tones are always read from the waveform memory specified by the ST data.


Waveform memories are read after the waveform memory address which has been sampled previously by the sounding channel is incremented according to FDH and FDL data of that channel.

The waveform memory is read after its address which has been smapled previously by the sounding channel is incremented according to FDH and FDL data of that channel. Therefore, the music tone data stored in the waveform memory can be set to any frequency.

If the loop stop data (FFH) stored in the waveform memory is read, waveform memory read address is set to the LSH and LSL data, and the waveform memory is read again. Therefore, any part of music tone data stored in the waveform memory can sound repeatedly.

[Address pointer function]

The address pointer controls addresses of 11 digits below the decimal point, for fine-adjusting the integer address to specify addresses of the 64K-byte waveform memory and the music tone frequency. The flow-chart below shows the processing executed independently for each of the eight channels.

RIGOR

[Example of music tone data frequency setting]

Examples of FDH and FDL setting are shown below.

Number of timbre data words: 256 words
Source clock frequency: 10 MHz

Timbre	FD set value		Frequency responding to		FD set value		Frequency responding to
name	FDH	FDL	the FD set value (Hz)	Voice	FDH	FDL	the FD set value (Hz)
C ₁	02	92	32.68	C ₄	14	93	261.61
C ₁	02	В9	34.62	C ₄	15	D 4	277.56
D ₁	02	E 3	36.71	D ₄	17	18	293.65
D_1	03	0 E	38.84	D ₄	18	77	311.09
E,	03	3 D	41.18	E4	19	EC	329.61
F,	03	6 E	43.61	F ₄	1 B	76	349.18
F ₁	03	A 3	46.24	F ₄	1 D	18	369.95
G ₁	03	DA	48.98	G ₄	1 E	D4	392.00
G_1	04	15	51.91	G₄	20	A 9	415.30
A ₁	04	53	54.99	A ₄	22	9 A	439.98
A_1	04	95	58.26	A ₄	2 4	A 9	466.16
В	04	DA	61.69	B ₄	26	D 7	493.87
C ₂	05	24	65.37	C ₅	29	26	523.23
C_2	05	7 2	69.24	C ₅	2 B	98	554.32
D_2	05	C 5	73.36	D ₅	2 E	30	587.30
D_2	06	1 D	77.73	Ds	30	EF	622.22
E ₂	06	7 A	82.35	E ₅	33	D 8	659.23
F ₂	06	DD	87.27	F ₅	36	ED	698.42
F ₂	0 7	46	92.49	F ₅	3 A	31	739.94
G ₂	0 7	В 5	98.00	G₅	3 D	A 7	783.95
G ₂	0.8	2 A	103.81	G₅	41	52	830.59
A ₂	0.8	A 6	109.97	As	4 5	3 4	879.96
A ₂	09	2 A	116.53	A ₅	4 9	5 2	932.32
B ₂	09	B 5	123.43	B ₅	4 D	ΑE	987.75
C ₃	0 A	49	130.78	C ₆	5 2	4 C	1046.5
C ₃	0 A	E 6	138.58	C ₆	5 7	3 1	1108.7
D_3	0 B	8 C	146.83	D ₆	5 C	6 1	1174.7
D ₃	0 C	3 B	155.52	D ₆	6 1	DF	1244.5
E ₃	0 C	F6	164.81	E ₆	67	В0	1318.5
F ₃	0 D	вв	174.59	F ₆	6 D	D 3	1396.5
F ₃	0 E	8 C	184.97	F ₆	74	6 4	1480.0
G ₃	0 F	6 A	196.00	G ₆	7 B	50	1568.0
G_3	10	5 4	207.62	G ₆	8 2	A 4	1661.2
A_3	11	4 D	219.99	A ₆	8 A	69	1760.0
A_3	12	54	233.05	A ₆	9 2	A 5	1864.7
В3	13	6 B	246.91	B ₆	9 B	60	1975.7
-				C ₇	A 4	99	2093.0

3. Internal Data Setting

(1) Address map

There is an 8K byte address space inside that can be accessed from a microcomputer. The table below shows the address map.

{ Address }	[Content]
1FFFH	Waveform data Waveform data memory is accessed via this IC. 4K byte can be directly accessed.
1000H	Using the bank function in the control Reg enables access to up to 64K byte.
OFFFH	
	Not used
0009H	
0008H	Channel ON/OFF Reg
0007H	Control Reg
0006H	*ST data memory
0 0 0 5 H	*LSH data memory
0 0 0 4 H	*LSL data memory
0003H	*FDH data memory
0002H	*FDL data memory
0001H	*PAN data memory
0000H	*ENV data memory

^{*:} Items marked with * must be set independently for each channel by the bank function in the control Reg.

(2) Control Reg

This register sets modes of this IC, waveform memory bank addresses, and internal memory bank channels.

This is a write-only register.

7	6	5	4	3	2	1	0	Bit
ON	MOD	_	_	*WB3	WB2	WB1	WB0	Address
OFF	WOD		<u> </u>		CB2	CB1	CB0	0007H

*WB: Wave bank

Bit 7: ON/OFF

This IC starts sounding when this bit is set and stops sounding when this bit is reset. External waveform memories of a microcomputer can be read only when the IC is not sounding. When the IC is sounding, writing to the external waveform memories is restricted as described later.

Bit 6: MOD

This bit controls to which register the content of bits 3 to 0 is written.

The microcomputer writes the content of bits 2 to 0 to CBs 2 to 0 when this bit is "H", and writes the content of bits 3 to 0 to WBs 3 to 0 when this bit is "L"

When MOD = 'H'

Bits 2 to 0: CBs* 2 to 0

These bits control selection of channels when the microcomputer accesses internal memories (ENV, PAN, FDL, FDH, LSL, LSH, and ST).

*CB: Channel Bank

CB 2	CB 1	CB 0	Channel NO.
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4
1	0	0	5
1	0	1	6
1	1	0	7
1	1	1	8

When MOD = 'L'

Bits 3 to 0: WBs 3 to 0

These bits control higher addresses when the micro computer accesses external waveform memories. The table below shows the relation between set values of WBs 3 to 0 and the addresses for accessing external waveform memories.

WD 0	145.0	14/0.0	1410.4		External wave	form memory address
WB 3	WB 2	WB 1	WB 0	Memory No.	Address	
0	0	0	0	1	0000H~0FFFH	
0	0	0	1	1	1000H~1FFFH	
0	0	1	0	1	2000H~2FFFH	
0	0	1	1	1	3000H~3FFFH	
0	1	0	0	1	4000H~4FFFH	
0	1	0	1	1	5000H~5FFFH	
0	1	1	0	1	6000H~6FFFH	
0	1	1	1	1	7000H~7FFFH	
1	0	0	0	2	0000H~0FFFH	
1	0	0	1	2	1000H~1FFFH	
1	0	1	0	2	2000H~2FFFH	
1	0	1	1	2	3000H~3FFFH	
1	1	0	0	2	4000H~4FFFH	
1	1	0	1	2	5000H~5FFFH	
1	1	1	0	2	6000H~6FFFH	
1	1	1	1	2	7000H~7FFFH	

Note: Memory No. 1 is selected by RAMC1B. Memory No. 2 is selected by RAMC2B.

(3) Internal memory

This internal memory stores data for sounding, which will be described later, for each of the eight channels.

Setting arbitrary bits of FDH enables address increment of one sampling time as shown in the table below.

FDH bit	Address increment
7	2 ⁴
6	2 ³
5	2 ²
4	2 ¹
3	2 ⁰
2	2 ⁻¹
1	2-2
0	2-3

Example: When only bits 4 and 3 of FDH are set, the address is incremented by $2^1 + 2^0 = 3$ counts in one sampling.

Setting arbitrary bits of FDL enables address increment of one sampling time as shown on the next page.

FDL bit	Address increment			
7	2-4			
6	2 ⁻⁵			
5	2-6			
4	2-7			
3	2-8			
2	2-9			
1	2 ⁻¹⁰			
0	2-11			

Example: When only bits 4 and 3 of FDL are set, the address is incremented by $2^{-7} + 2^{-8}$ counts in one sampling.

f. PAN data(Address = 0001H)

This data controls the separation of output generated from the sounding channel into 'L' and 'R' stereo outputs.

The higher four bits of PAN data are the coefficient of the 'R' output, and the lower four bits are that of the 'L' output.

7	6	5	4	3	2	1	0
MSB			LSB	MSB			LSB
+	Coefficient of the 'R' output			(Coefficient of	the 'L' outpu	t

Bit Address 0001H

g. ENV data(Address = 0001H)

To vary the amplitude of the waveform data read from the waveform memory by the sounding channel, this data multiplies it with the ENV data.

Bit 7 is MSB, and bit 0 is LSB.

(4) Channel ON/OFF Reg

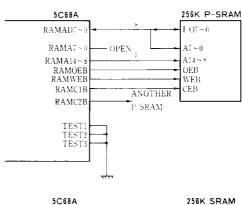
This register controls start/stop of sounding for each channel.

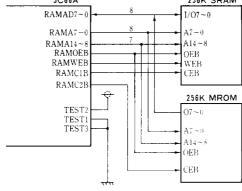
However, the control by the control register is given priority, and this register is valid when the control register sets the sounding state.

Bit 0 responds to channel 1, and bit 7 responds to channel 8.

4. Interface with Peripheral Devices

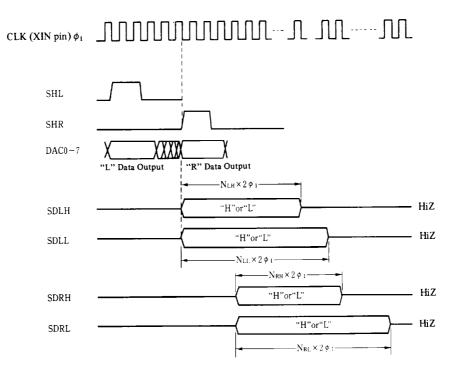
(1) Microcomputer interface

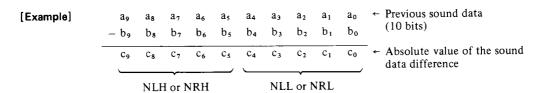

This IC can be used as a peripheral device of an 8-bit CPU.


The control Reg's setting of sounding/not sounding states changes the conditions of the access from the microcomputer to this IC. See the table below.

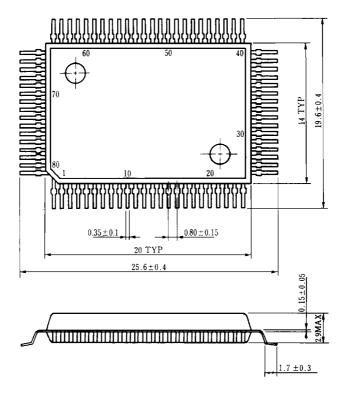
Condition	External wa	aveform memory	Internal memory		
	Read	Write	Read	Write	
Sounding	Impossible	Access by cycles more than the 16 cycles of the source clock.	Impossible	Possible	
Stopping	Possible	Possible	Impossible	Possible	

(2) Waveform memory interface


This IC externally connects pseudo SRAMs, SRAMs, or MROMs as waveform memories. Examples are shown in the figure below.



RIGOH


(3) RF5C68A outputs PCM sounds in digital values, and must have an external D/A converter connected. The output timing chart is shown below.

However, NLH, NLL, NRH, and NRL are the number of bits of the absolute value of the difference of the previous sound data. If it is larger than the previous data, the output value is "H", and if it is smaller, the output value is "L"

■ PACKAGE DIMENSION

Unit: mm